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Abstract

The work desires: i) to determine the optimum lesfebatch size in bottleneck facility and ii) toadyrze the effect
of common components on work-in-process (WIP) leared cycle time in a multistage production systaman

uncertainties. The uncertainty is created by machireakdown and quality variation. Few simulatioodels are
developed based on a live case from a companymiduels are verified and validated with the histalridata from

the company and by face validity. Taguchi apprdactorthogonal array is used in designing experithamd these
are executed in WITNESS. It is observed that theatian in level of common component in the systbas

significant impact on the production WIP level angcle time. The main contribution of this reseaish
determination of the optimal level of batch sizeaibottleneck resource under the uncertainties approach can
be generalized to any multistage production systegardless of the precedence relationships antongadrious
production stages in the system.
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1. Introduction

The classical lot sizing model assumes the outptie production process is of perfect quality. Hoer, in real
manufacturing system, nonconforming items may pcedas time goes. These nonconforming items nedx to
screened out. The presence of defective produdvatetin a smaller lot size. Optimum lot size fack stages even
more complicated in multistage production systenemvicycle time for each stage is different. The nemdf
defectives may vary in multistage production systemere the products move from one stage to anditegrending
on proportion of defective items, the optimal basites in the stages also varies. However, sm&dhbsize may
reduce the productivity and stock out and thiseaese the total expected cost. Thus, an optimursizetmust be
obtained when quality is stochastic.

Multi-stage production planning is a system whicinsforms or transfer inventories through a setafnected
stages to produce the finished goods. The stagessent the delivery or transformation of raw matey transfer of
work-in-process between production facilities, asisly of component parts, or the distribution ofisimed goods.
The fundamental challenge of multi-stage produci®rihe propagation and accumulation of uncerénthat
influences the conformity of the outputs [1]. Theegent study is concern with such a multistageesysand
simulation is chosen to analysis the objectives.

A simulation model is a surrogate for experimentivith a real manufacturing system. It is often adible or not
cost-effective to do an experiment in a real precdsus, it is important for an analyst to detemnivhether the
simulation model is an accurate representatiorhefsystem being studied. Further the model hastorédible;
otherwise, the results may never be used in thésidaemaking process, even if the model is “val[@]. Few

simulation models are used to analyze various &ffetuncertain factors namely machine breakdowsh gumality

variability.

Machine breakdown means the failure or stoppagmadhine(s) for unknown reason(s) and a representat
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interruption in the process [3]. It wields a redot of capacity level and delay the release of potsl or
subassemblies [4]. In this study, the authors asdguthat no alternative machines are available éf ¢Risting
machines fail and no alternative routing can becetedl if an order needs to be expedited. Short faaturing
cycle time is accepted as the central underlyitpfafor successfully accomplishing the world-classnufacturing
goals such as on-time delivery [5], quality [6, figxibility [8] and productivity [9]. Manufacturig cycle time is
now often used as a measure of a firm's competitgs.

Quality defines as the degree to which a systermpoment, or process meets specified requirementaeats
customers’ expectations [10]. Quality of a prodixta measure of perfection. A quality uncertainfy tioe
unacceptable material condition not only affeces ¢hange of finished products, but also createsdditional time
required at a resource to rework the parts. Suditiadal time spent at a resource, delays the mdnmork to be
released to the resource. The factors of qualitiatian are found at Wazed et al. [4]. In this @] the inspection is
performed at the final stages only and the defegtroduct(s) is simply rejected.

The effects of the reworking of defective itemstba economic production quantity (EPQ) model widitklogging

has studied by Peter Chiu [12]. In his study, alcen defective rate is considered, and when reguitatuction ends,
the reworking of defective items starts immediat@yyang et al. [13] have investigated the integgtatendor-

buyer inventory problem. In their model, it is assd that an arrival order lot may contain some ctife items,

and the defective rate is a random variable. Adbmrtage is allowed and the production cycle timeadntrollable

and reducible by adding extra crashing cost. YardjRan [14] have developed an integrated inventwgiel that

minimizes the sum of the ordering/ setup cost, ingldcost, quality improvement investment and cnaglgost.

They simultaneously optimize the order quantitgdidime, process quality and number of deliveridglavthe

probability distribution of the lead time demandh@mal. But they did not think of common component

Porteus [15] has developed, the earliest EOQ madtélas shown a relationship between lot size anality.

Porteus research has encouraged many researchial toith modelling the quality improvement prahke Zhang
and Gerchak [16] have considered a joint lot sizng inspection policy studied under an EOQ modetre a
random proportion of units are defective. Makis &uohg [17] have studied the effect of machine fauon the
optimal lot size and on the optimal number of irdjoms in a production cycle. Ouyang et al. [18}d&nvestigated
the lot size, reorder point inventory model invalyi variable lead time with partial backorders, vehe¢he
production process is imperfect. Chan et al. [I®)jdle a framework to integrate lower pricing, relvand reject
situations into a single EPQ model. To identify #mmount of good quality items, imperfect qualitgnits and
defective items in each lot, a 100% inspectioneggrmed. Ben-Daya and Rahim [20] developed a staljie lot-
sizing model for imperfect production processes €fiect of inspection errors in screening non-oanfng items
at each stage has been incorporated. These writinfystunately neglect the event of resource breakdand
component commonality.

There are few batch sizing models those explidiflige production cycle time into account in a ststica
manufacturing system. In these researches, the fanoring facility is usually modelled by a queuisgstem.
Karmarkar [21] has examined the relationships betwaanufacturing cycle times, WIP inventories aatth size.
Karmarker et al. [22] have presented a multi-itesching heuristic with the objective of minimizitige queuing
delays. They developed upper and lower bounds empitimal batch size. Based on the bounds, threx lsézing
heuristics are presented and tested. These stualesignored the uncertainties and commonality.

Hong [23] has developed a mathematical model tdystbe effect of reduction in manufacturing cydime and
increase in process quality on lot size computatiod total relevant cost. Kuik and Tielemans [2d¥é present a
batch sizing model that minimizes the average quedelay for a multi-item, single-machine work-gentLater,
they investigate the relationship between batck siad lead time variability. Machine breakdown aotnmon
components are not considered for conclusions.

The major limitations of the earlier studies afethie combined effects of quality and machine bdeakn in a
multistage production system are ignored; ii) Nofh¢he studies have considered a multistage pramugroblem
in determining the optimal lot size in a bottlendakility; iii) None of the models/studies have luded common
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component and brought out live case. Under sudtumistances, the authors studied the effects of coend
commonalities and two uncertain factors, namely hirec breakdown and quality variation in a multigtag
production system. The main objective of this stiglip analyze the throughput and average producyale time
of the assembly lines in a company, consistingwad products under component commonality in a disdr
environment.

2. The Production System

The company namely XDE (a given name) located ihalytda produces bicycle wheels. This research deitls
the production and assembly line of bicycle whe#{.oThere are two different end products, prodskt(line 1)
and product DL (line 2) of this system. The produittails are in Table 1. Parts are initially psscien same sawing
machine then placed in two separate productiorsliBgch production line contains 3 (three) diffeqgmocessing
(viz. assembly, inspection and packing operatiom) anded up with single end products after the naBke
operation. Figure 1 is showing the existing prourctiayout of the company. Presently the company tne
conventional production processes with known |é&ae t They exercise event trigger policy for anypgage/break
down of the lines.

Baged  Bages  Slaged Table 1: The products details for XDF
= Photograph Details

Lm“ Single layer rim (SL), 26 inch
diameter, 32 holes, Triple butted

@ @ /\rvﬂmez spokes (2.3/1.8/2.0mm)
l l Double layer rim (DL), 26 inch

Stage ] Blaged  Bfage3

Blsteris] 5L
Miterial DL

9%
o

Inspection?
' diameter, 28 holes, Double butt

Figure 1: Existing production layout of XDE spokes (2.0/1.8/2.0mm)

3. Experimental Design

This study developed few simulation models basetherexisting production layout (Figure 1) of tlmrgpany. The
existing layout is modified to introduce common gament(s) in the system. Figure 2 shows the praptseout
that incorporates commonality dimension. Two modetsnely the base model (Figure 3a) and the comiityna
model (Figure 3b and Figure 3c) are developed ifNASS simulation package. The prominent uncertdattors

- machine breakdown and quality variability are l@ggbseparately and in combined form in simulatexercises
with/without the inclusion of common components doalysis.

In this study, two factors are considered and ffects of these factors on the system performanedested. The
levels of commonality and production batch sizéblatkage station are considered as control factatezision
variable. The machine breakdown and fraction of-oc@mforming items are considered as noise factoalysis of
mean value, signal to noise ratio and ANOVA areduseanalyze the effect of batch size and commanpoment
on production cycle time and throughput quantitytetaction effects are observed to make sure that t
characteristic of the control factors is additive.

ince this study contains two control factors akélevels and two noise factors of three levetsefach, thus
TSZ XSZF: 81design points are required in case of full (or clatg) factorial design. Each experiment is simulate
with nine replications (two noise factors of thtegels each) and the average value and its signabise ratio are
obtained and analyzed. In order to evaluate tiperxental results statistically, analysis of vac@ (ANOVA) is
applied. The same are used to see the effect dftibiaction. Statistical significance tests okefs are made at 5%
significance level. The ranges of factor levels sekected based on capacity limitation and in clbason with the
engineers in the company (Table 2).

Table 2: Control factors and their levels for Tagunethod

Control Factors Level 1 | Level 2| Level 3
Batch size at the bottleneck station (i.e. LangiAg) 2 6 12
Common component, B 0 1 2
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Figure 3: Base (a) and ngmmonality (b &c) MoaRgIWITNESS

4. Data Collection and Validation

In order to build the simulation models, and to gt initial level of various factors in the modediata were
collected. The data includes processing time ah esi@ges, setup time, average defective proportimachine

breakdown etc. The time required to position eaaft ipto fixed place before operation is carried isusetup time
per piece. Setup time per batch is the time to thadatch material and prepare the machine. PsiogeEme is the
period during which a part is actually works ongeThistorical data under deterministic condition estected from

the company. The cycle time and setup time foritapstation are much higher than the others. thésbottleneck
of the system. Therefore, in this article differéatels of batch size are considered to analyzeeffects of

production quantity and cycle time. Data are neddedtbuilding the simulation model, validating theodel and to

serve as guideline in determining the level of tbhése factor. Validation of data are performed nswe that these
are for the right issue and useful. The recorded deere scrutinized by the production engineers atteofamiliar

with the specific processes.

5. Model Validation

The simulation models are validated by comparimgsimulated output with historical data collectezhf the floor
and also by face validity. The models run for 5gajter a warm-up period o3 days and then the simulated
results are generated. The run time for a 9 hatirfeh 5 days is $60x5 minutes, which is same with the operation
schedule of the lines. The warm-up period is usedsisure the accurate result. Throughput quardityhfe real
system and simulation model are shown in Tablet® duthors have authenticated the models by arrteapé
authorized WITNESS trainer for face validity. Asetlvariation in the throughputs between the reatesysand
simulation model is not large and also the facedatibn permitted with good recommendations, hetiwe
simulation models are acceptable for analyzingsrstem. After validating the base model, variousetirainties are
imposed to the models to investigate the case wipacts.
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Table 3: Comparison between the existing systensandlation model

Response Existing System| Simulation Model
Mean yearly throughput for SL 114 116
Mean yearly throughput for DL 133 135
Mean cycle time for SL (min) 143.28 146.22
Mean cycle time for DL (min) 137.56 139.68

6. Data Analysis and Discussions

The authors have conducted a total of 81 experisndiaible 4 is showing the summary of experimergslilts for
the WIP level and production cycle times for boftthe lines with corresponding S/N ratio for eaclereise. The
smaller the better characteristic is used for Wi@ eycle times and in calculating the correspon@Hfg ratios.

Table 4: Experimental result for each experiment

Cycle time
Experiment| Batch | Common il 5] Line 1 Line 2
No. size | component| S/N ratio S/N ratio S/N ratio
Mean Mean Mean
Smaller Smaller Smaller
1 1 1 -49.6194| 302.6667 -27.0731 22.5766 -27.0849 BB.60
2 1 2 -46.1358| 202.6667 -22.9643 14.0666 -23.0822 BX.25
3 1 3 -46.3895| 208.6667 -22.9753 14.0883 -23.0517 B4.20
4 2 1 -46.2211| 204.6667 -20.8778 11.06R2 -20.9726 BB18
5 2 2 -40.3968| 104.6667 -14.8383 5.5189 -14.8832 5.5467
6 2 3 -46.3895| 208.6667 -14.7910 5.4889 -14.74012 5.4567
7 3 1 -46.2211| 204.6667 -18.1118 8.0456 -18.1538 8.0844
8 3 2 -40.3968| 104.6667 -13.0514 4.4933 -13.1102 4.5p33
9 3 3 -49.6194| 302.6667 -12.4857 4.2100 -12.8106 4.3)700

Since the experiment design is orthogonal, theceffé batch size and common component for diffetem¢ls are

separated out. Table 5 shows the response for ameu®/N ratio for WIP level and for production &¢imes of

production lines. Since the characteristic of tHastors are the smaller the better, they are chbased on smaller
mean and larger S/N ratio. Because the larger fRe&io the smaller the variance are around ttsérelé value. It

is pellucid that an increase in the batch size@rdmon commonality yield a decrease in WIP levehim system.

The production cycle time also decreases with titethsize and common component(s). But they ateaneed by

the capacity limitation of the lancing stations.eTWIP level is least when the batch size is 6 oad@ the system
uses 2 common components. The minimum cycle timegdch of production lines are achieved when titehb

size is 12 and 2 common components are introdubieds, based on response table (Table 5), the Isa&tehand

commonality are chosen as 12 and 2 respectively.

Table 5: Response table for WIP and cycle time gthaller the better)

Cycle time
ull? Line 1 Line 2
Mean SIN ratio Mean S/N ratio Mean SIN ratio
[ g © < ) = © < © < [ c
Level | N | 5§ | N §g| XN §¢ i §g | XN gg | N 52
= € o = € o = € o = € o = € o = € o
S €< S € 2 3] E < S € 2 3] € 2 3] E 2
= G £ = G £ = o E = G £ = G £ = o E
fos] O 8 fos] O 8 m 08 fos] O 8 fas] O 38 fos] O 38
Level 1| 276.6| 247.2 -48.66 -47.47 17.0R3 13.968 .424 -22.07| 16.908 13.894 -24.34 -22.02
Level 2| 172.7| 237.3 -4434 -47.35 7.396 8.109 -16.8-17.03| 7.357 8.0260 -16.84 -16.95
Level 3| 172.7| 137.3 -44.34 -42.31 5.659 8.011 94.6-6.87 5.583 7.927] -14.56 -16.15
Diff 103.9 | 109.9 4.32 5.36 11.364 5.947 9.71 5.20 1.325| 5.967 9.79 5.27
Rank 2 1 2 1 1 2 1 2 1 2 1 2
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Figures 4-6 show the interaction effects of vaomitin levels of control factors for (a) mean vaara (b) S/N ratio
of WIP and cycle times for the lines (1 & 2) resjpeady. The figures show that there is an intei@actbetween the
batch size and number of common component usebeirsystem. The interaction graphs between commygnali
(factor B) and batch size (factor A) show that éfffiect of batch size on production level and cyitee at different
levels of common component is not the same. Thjdi@s that there is an interaction between thesefagtors.
The WIP is least when the batch size (factor Ajtisevel 2 and common component (factor B) is athighest
level. However, the cycle times for both of theebn(1 and 2) are least when both of the factorar@ B) are at
high levels It implies that inclusion of common quonents accelerate to achieve WIP target earl@r the cycle

time.
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Tables 6-8 show the ANOVA for WIP level and cydimés of both of the lines (1 and 2) in mean and &b
respectively. These tables show the relative ingue of the control factors affecting the WIP apdetime. Both
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mean and signal to noise ANOVA indicates that baies in lancing station (factor A) and use of omwn
component (factor B) is statistically significaihe factors have very strong impacts on WIP antedymes.

Table 6: ANOVA for Mean value and S/N ratio of WIP

Mean value S/N ratio
Source
DF SS MS F P SS MS F P
2 21585.8 10792.9 311.22 0.000 37.3694 18.6847 336.1 0.003
2 22173.« 11086." 319.6¢ | 0.00( 54.2324 27.1162 52.43 0.001
Error 4 138.7 34.7 2.0686 0.5171
Total | 8 43897.9 93.6703
= ' R- = %' R- i) =
S = 5.889; R-Sq = 99.68%; R-Sq(adj) = 99.37% S = 0.7191; R-Sq = 97.79%; R-Sq(ad))
95.58%
Table 7: ANOVA for Mean value and S/N ratio of ayd¢ime of Line 1
Mean value S/N ratio
Source
DF SS MS F P SS MS F P
2 222 637 111.318 56.66 0.00L 157.308 78.6541 222.95 0.00¢
2 70.05¢ 35.02° 17.8% 0.01¢ 53.517 26.7583 75.85 0.001
Error 4 7.859 1.965 1.411 0.3528
Total 8 300.55( 212.236
= ' R- = %' R- i) =
S = 1.402; R-Sq = 97.39%; R-Sq(ad]) = 94.77% S = 0.5940; R-Sq = 99.34%; R-Sq(ad))
98.67%
Table 8: ANOVA for Mean value and S/N ratio of ayd¢ime of Line 2
Mean value S/N ratio
Source
DF SS MS F P SS MS F P
A 2 224.83' | 112.41¢ | 59.7¢ | 0.00] 155.964 77.9822 200.84 0.000
2 69.582 34.791 18.49 0.010 52.547 26.2733 67.66 0.001
Error 4 7.52¢ 1.88: 1.553 0.3883
Total 8 | 301.944 210.064
S =1.372; R-Sq = 97.51%; R-Sq(adj) = 95.01% S =0.6231; R-Sq = 99.26%; R-Sq(adj) = 98.52%

Based on ANOVA (Tables 7-9) and response tablel€Ta) it is obvious that batch size of 12 in thading station
and 2 common components yield the lowest cycle ametWIP level in the system.

7. Conclusions
From the experiences of the analysis and from titeoones of the models, the authors would like tochade that —

The developed simulation models for the productsystem of the company under consideration are
verified and validated with the historical data dndface validity. The comparison shows that sirtada
deliveries are acceptable for further investigation

The lancing stations process a batch of partstiae and they are bottleneck of the system. Basethe
least manufacturing cycle time and WIP level, tipimoum batch size of 12 in lancing stations and two
common components could ensure the best outcontbe sf/stem.

Batch sizes in lancing stations and using two commeomponents, the system outcomes improve
significantly. ANOVA for mean and S/N ratio for dgctime and WIP indicate that no important facter i
omitted from experiments.

There is an interaction among the common compoaedithe batch sizes in lancing stations. The WP an
cycle time is least when the batch size and comooomponent are at high levels.

223



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Du, X. & Chen, W., 2000, Methodology for managthe effect of uncertainty in simulation basedigies
AIAA Journal, 38(8), 1471-1478.

Law, A. M. & McComas, M. G., 1997, Simulation m&anufacturing systems. In Andradéttir, S., He&ly,
J., Withers, D. H. & Nelson, B. L. (eds.), Winteintblation Conference. Renaissance Waverly Hotel,
Atlanta, GA. 86-89.

Koh, S. C. L. & Saad, S. M., 2003, MRP-contr@lleanufacturing environment disturbed by unceryaint
Robotics and Computer-Integrated Manufacturingl49( 157-171.

Wazed, M. A., Shamsuddin Ahmed & Nukman Yusd&f08, Managing Quality and Lead Time
Uncertainties under Component Commonality. 1st AREED-Net Regional Conference in
Manufacturing Engineering (AUN/SEED-Net-RC ManuBaQ Manila, Philippines.

Blackburn, J. D., 1985, ‘Time-based competite®si, in Moody, P. (Ed.), Strategic Manufacturing:
Dynamic New Directions for the 1990s. Dow JonesiitiHomewood, IL.

Schmenner, R. W., 1991, Speed and productivitilackburn, J. D. (ed.), Time-Based Competitidhe
Next Battleground in American Manufacturing. Riath&r. Irwin, Homewood, IL.

Schonberger, R. J., 1986, World Class ManufaguiNew York, USA: The Free Press

Stalk, G. J., 1988, ‘Time — the next source @fpetitive advantage. Harvard Business Review {July
August)

Wacker, J. G., 1987, The complementary naturaarfufacturing goals by their relationship to trgiput
time: a theory of internal variability of produaticystems. Journal of Operations Management, 3(2),
106.

Aas, E. J., Klingsheim, K. & Steen, T., 1992uaftifying Design Quality: A Model and Design
Experiments. Euro ASIC '92. Paris, France. 172-177

Kim, J. & Gershwin, S. B.,2005, Integrated gyahnd quantity modeling of a production line. OR
Spectrum, 27(2-3), 287-314.

Peter Chiu, Y., 2003, Determining the optimat $ize for the finite production model with random
defective rate, the rework process, and backlogdtngineering Optimization, 35, 427-437.

Ouyang, L.-Y., Wu, K.-S. & Ho, C.-H., 2007, Amtegrated vendor-buyer inventory model with qualit
improvement and lead time reduction. Internatidimairnal of Production Economics, 108(1-2), 349-358.
Yang, J.-S. & Pan, J. C.-H., 2004, Just-in-timgchasing: an integrated inventory model invajvin
deterministic variable lead time and quality impgment investment. International Journal of Producti
Research, 42(5), 853 - 863.

Porteus, E. L., 1986, Optimal lot sizing, psxquality improvement and setup cost reductiorer&mons
research, 34(1), 137-144.

Zhang, X. & Gerchak, Y., 1990, Joint Lot Siziagd Inspection Policy in an EOQ Model with Random
Yield. IIE Transactions, 22(1), 41 - 47.

Makis, V. & Fung, J., 1998, An EMQ model witiispections and random machine failures. J Oper Res
Soc, 49(1), 66-76.

Ouyang, L.-Y., Chen, C.-K. & Chang, H.-C., 20@uality improvement, setup cost and lead-time
reductions in lot size reorder point models withimperfect production process. Computers & Openatio
Research, 29(12), 1701-1717.

Chan, W. M., Ibrahim, R. N. & Lochert, P. BQUB, A new EPQ model: integrating lower pricingyoek
and reject situations. Production Planning & Cadnffbe Management of Operations, 14(7), 588 - 595.
Ben-Daya, M. & Rahim, A., 2003, Optimal lotisig, quality improvement and inspection errors for
multistage production systems. International Joush&roduction Research, 41(1), 65 - 79.

Karmarkar, U. S., 1987, Controlling W.I.P. abeladtimes in Job Shops. Center for Manufacturing &
Operations Management, William E. Simon GraduateoSkof Business Administration, University of
Rochester.

Karmarkar, U. S., Kekre, S. & Kekre, S., 199ajlti-item batching heuristics for minimization of
queueing delays. European Journal of Operations¢&teh, 58(1), 99-111.

Hong, J.-D., 1995, The effects of manufacturlegd time and process quality in a multi-process
production system. Production Planning & ContrdieT™Management of Operations, 6(4), 311 - 319.

Kuik, R. & Tielemans, P. F. J., 1999, Lead-tivagiability in a homogeneous queueing model o€hiaty.
International Journal of Production Economics, 53)1435-441.

224



